Computations of Nambu-Poisson cohomologies
نویسنده
چکیده
In this paper, we want to associate to a n-vector on a manifold of dimension n a cohomology which generalizes the Poisson cohomology of a 2-dimensional Poisson manifold. Two possibilities are given here. One of them, the Nambu-Poisson cohomology, seems to be the most pertinent. We study these two cohomologies locally, in the case of germs of n-vectors on Kn (K = R or C).
منابع مشابه
. D G ] 2 3 Fe b 19 99 Remarks on Nambu - Poisson , and Nambu - Jacobi brackets
We show that Nambu-Poisson and Nambu-Jacobi brackets can be defined inductively: an n-bracket, n > 2, is Nambu-Poisson (resp. Nambu-Jacobi) if and only if fixing an argument we get an (n − 1)-Nambu-Poisson (resp. Nambu-Jacobi) bracket. As a by-product we get relatively simple proofs of Darboux-type theorems for these structures.
متن کاملm at h . D G ] 1 5 A pr 1 99 9 Remarks on Nambu - Poisson , and Nambu - Jacobi brackets
We show that Nambu-Poisson and Nambu-Jacobi brackets can be defined inductively: an n-bracket, n > 2, is Nambu-Poisson (resp. Nambu-Jacobi) if and only if fixing an argument we get an (n − 1)-Nambu-Poisson (resp. Nambu-Jacobi) bracket. As a by-product we get relatively simple proofs of Darboux-type theorems for these structures.
متن کاملar X iv : m at h / 99 02 12 8 v 2 [ m at h . D G ] 7 M ar 1 99 9 Remarks on Nambu - Poisson , and Nambu - Jacobi brackets
We show that Nambu-Poisson and Nambu-Jacobi brackets can be defined inductively: an n-bracket, n > 2, is Nambu-Poisson (resp. Nambu-Jacobi) if and only if fixing an argument we get an (n − 1)-Nambu-Poisson (resp. Nambu-Jacobi) bracket. As a by-product we get relatively simple proofs of Darboux-type theorems for these structures.
متن کاملOn Filippov Algebroids and Multiplicative Nambu–Poisson Structures
We discuss relations of linear Nambu-Poisson structures to Filippov algebras and define a Filippov algebroid – a generalization of a Lie algebroid. We also prove results describing multiplicative Nambu-Poisson structures on Lie groups. In particular, it is shown that simple Lie groups do not admit multiplicative Nambu-Poisson structures of order > 2.
متن کاملLeibniz algebroid associated with a Nambu - Poisson structure
The notion of Leibniz algebroid is introduced, and it is shown that each Nambu-Poisson manifold has associated a canonical Leibniz algebroid. This fact permits to define the modular class of a Nambu-Poisson manifold as an appropiate cohomology class, extending the well-known modular class of Poisson manifolds.
متن کامل